Narrative Review of Anti-Retrovirals Used in COVID-19 Treatment
DOI:
https://doi.org/10.61740/jcp2s.v3i2.54Keywords:
COVID-19, anti-retroviral, SARS-CoV-2, RNA-dependent RNA polymerase, antiviral therapyAbstract
The COVID-19 pandemic has necessitated the exploration of various therapeutic strategies, including the repurposing of existing antiviral drugs. This narrative review examines the use of anti-retroviral agents in the treatment of COVID-19, focusing on their mechanisms of action, efficacy, and safety profiles. Key antiretrovirals discussed include Remdesivir, Lopinavir/Ritonavir, Ribavirin, Oseltamivir, Favipiravir, and Sofosbuvir. These agents primarily act by inhibiting RNA-dependent RNA polymerase (RdRp), a critical enzyme in the replication cycle of SARS-CoV-2. Clinical trials and in vitro studies have provided mixed results regarding their effectiveness, with some agents showing promise in reducing mortality and improving recovery times, while others have demonstrated limited efficacy. The review highlights the urgent need for further clinical research to optimize antiviral regimens and improve patient outcomes in the ongoing battle against COVID-19.
References
Abbaspour Kasgari, H., Moradi, S., Shabani, A. M., Babamahmoodi, F., Davoudi Badabi, A. R., Davoudi, L., Alikhani, A., Hedayatizadeh Omran, A., Saeedi, M., Merat, S., Wentzel, H., Garratt, A., Levi, J., Simmons, B., Hill, A., & Tirgar Fakheri, H. (2020). Evaluation of the efficacy of sofosbuvir plus daclatasvir in combination with ribavirin for hospitalized COVID-19 patients with moderate disease compared with standard care: A single-centre, randomized controlled trial. Journal of Antimicrobial Chemotherapy, 75 (11), 3373–3378. https://doi.org/10.1093/jac/dkaa332
Agrawal, U., Raju, R., & Udwadia, Z. F. (2020). Favipiravir: A new and emerging antiviral option in COVID-19. Medical Journal Armed Forces India, 76 (4), 370–376. https://doi.org/10.1016/j.mjafi.2020.08.004
Anand, K., Karade, S., Sen, S., & Gupta, R. (2020). SARS-CoV-2: Camazotz's Curse. Medical Journal Armed Forces India, 76 (2), 136-141.
Baden, L. R., & Rubin, E. J. (2020). Covid-19 — The search for effective therapy. New England Journal of Medicine, 382 (19), 1851–1852. https://doi.org/10.1056/NEJMe2005477
Cai, Q., Yang, M., Liu, D., Chen, J., Shu, D., Xia, J., Liao, X., Gu, Y., Cai, Q., Yang, Y., Shen, C., Li, X., Peng, L., Huang, D., Zhang, J., Zhang, S., Wang, F., Liu, J., Chen, L., ... Liu, L. (2020). Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering, 6 (10), 1192–1198. https://doi.org/10.1016/j.eng.2020.03.007
Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., ... Wang, C. (2020). A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine, 382 (19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
Chandawi, A., & Shuter, J. (2008). Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Therapeutics and Clinical Risk Management, 4 (5), 1023–1033.
Channappanavar, R., Zhao, J., & Perlman, S. (2014). T cell-mediated immune response to respiratory coronaviruses. Immunologic Research, 59n(1–3), 118–128. https://doi.org/10.1007/s12026-014-8534-z
Chen, C., Zhang, Y., Huang, J., Yin, P., Cheng, Z., Wu, J., Chen, S., Zhang, Y., Chen, B., Lu, M., Luo, Y., Ju, L., Zhang, J., & Wang, X. (2020). Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. medRxiv. https://doi.org/10.1101/2020.03.17.20037432
Chien, M., Anderson, T. K., Jockusch, S., Tao, C., Li, X., Kumar, S., Russo, J. J., Kirchdoerfer, R. N., & Ju, J. (2020). Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. Journal of Proteome Research, 19 (11), 4690–4697. https://doi.org/10.1021/acs.jproteome.0c00392
Choy, K.-T., Wong, A. Y.-L., Kaewpreedee, P., Sia, S. F., Chen, D., Hui, K. P. Y., Chu, D. K. W., Chan, M. C. W., Cheung, P. P.-H., Huang, X., Peiris, M., & Yen, H.-L. (2020). Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research, 178, 104786. https://doi.org/10.1016/j.antiviral.2020.104786
Elfiky, A. A. (2020). Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 248,*117477. https://doi.org/10.1016/j.lfs.2020.117477
Elfiky, A. A. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1761882
Eslami, G., Mousaviasl, S., Radmanesh, E., Jelvay, S., Bitaraf, S., Simmons, B., Wentzel, H., Hill, A., Sadeghi, A., Freeman, J., Salmanzadeh, S., Esmaeilian, H., Mobarak, M., Tabibi, R., Jafari Kashi, A. H., Lotfi, Z., Talebzadeh, S. M., Wickramatillake, A., Momtazan, M., ... Mobarak, S. (2020). The impact of sofosbuvir/daclatasvir or ribavirin in patients with severe COVID-19. Journal of Antimicrobial Chemotherapy, 75 (11), 3366–3372. https://doi.org/10.1093/jac/dkaa331
Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V. J., & Feldmann, H. (2013). Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Scientific Reports, 3, 1686. https://doi.org/10.1038/srep01686
Fan, Q., Zhang, B., Ma, J., & Zhang, S. (2020). Safety profile of the antiviral drug remdesivir: An update. Biomedicine & Pharmacotherapy, 130, 110532. https://doi.org/10.1016/j.biopha.2020.110532
Glass, C. A., Cash, J. C., & Mullen, J. (2020). Coronavirus disease (COVID-19). In Family Practice Guidelines. Springer Publishing Company. https://doi.org/10.1891/9780826153425.0016b
Goldman, J. D., Lye, D. C. B., Hui, D. S., Marks, K. M., Bruno, R., Montejano, R., Spinner, C. D., Galli, M., Ahn, M.-Y., Nahass, R. G., Chen, Y.-S., SenGupta, D., Hyland, R. H., Osinusi, A. O., Cao, H., Blair, C., Wei, X., Gaggar, A., Brainard, D. M., & Subramanian, A. (2020). Remdesivir for 5 or 10 days in patients with severe COVID-19. New England Journal of Medicine, 383 (19), 1827–1837. https://doi.org/10.1056/NEJMoa2015301
Gong, J., Dong, H., Xia, S. Q., Huang, Y. Z., Wang, D., Zhao, Y., Liu, W., Tu, S., Zhang, M., Wang, Q., & Lu, F. (2020). Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. medRxiv. https://doi.org/10.1101/2020.02.25.20025643
Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry, 295 (20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679
Hoffmann, G. F., & McKiernan, P. (2017). The single dose pharmacokinetics of ribavirin in subjects with chronic liver disease. In Inherited Metabolic Diseases: A Clinical Approach (pp. 203–226). https://doi.org/10.1007/978-3-662-49410-3_24
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181 (2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
Horby, P. W., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Emberson, J., Palfreeman, A., Raw, J., Elmahi, E., Prudon, B., Green, C., Carley, S., Chadwick, D., Davies, M., Wise, M. P., Baillie, J. K., Chappell, L. C., Faust, S. N., Jaki, T., & Landray, M. J. (2020). Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (Recovery): A randomised, controlled, open-label, platform trial. The Lancet, 396 (10259), 1345–1352. https://doi.org/10.1016/S0140-6736(20)32013-4
Hu, F., Yin, G., Chen, Y., Song, J., Ye, M., Liu, J., Chen, C., Song, Y., Tang, X., & Zhang, Y. (2020). Corticosteroid, oseltamivir and delayed admission are independent risk factors for prolonged viral shedding in patients with coronavirus disease 2019. The Clinical Respiratory Journal, 14 (11), 1067–1075. https://doi.org/10.1111/crj.13243
Huang, Y. Q., Tang, S. Q., Xu, X. L., Zeng, Y. M., He, X. Q., Li, Y., Harypursat, V., Lu, Y. Q., Wan, Y., Zhang, L., Sun, Q. Z., Sun, N. N., Wang, G. X., Yang, Z. P., & Chen, Y. K. (2020). No statistically apparent difference in antiviral effectiveness observed among ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha, and ribavirin plus lopinavir/ritonavir plus interferon-alpha in patients with mild to moderate coronavirus infection (COVID-19). Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2020.01071
Hung, I. F. N., Lung, K. C., Tso, E. Y. K., Liu, R., Chung, T. W. H., Chu, M. Y., Ng, Y. Y., Lo, J., Chan, J., Tam, A. R., Shum, H. P., Chan, V., Wu, A. K. L., Sin, K. M., Leung, W. S., Law, W. L., Lung, D. C., Sin, S., Yeung, P., & Yuen, K. Y. (2020). Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. The Lancet.*https://doi.org/10.1016/S0140-6736(20)31042-4
Jácome, R., Campillo-Balderas, J. A., Ponce de León, S., Becerra, A., & Lazcano, A. (2020). Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Scientific Reports, 10 (1), 9294. https://doi.org/10.1038/s41598-020-66440-9
Jockusch, S., Tao, C., Li, X., Chien, M., Kumar, S., Morozova, I., Kalachikov, S., Russo, J. J., & Ju, J. (2020). Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by remdesivir. Scientific Reports, 10 (1), 16577. https://doi.org/10.1038/s41598-020-73641-9
Kementerian Kesehatan Republik Indonesia. (2020). Situasi COVID-19. https://www.kemkes.go.id
Kim, S. B., Huh, K., Heo, J. Y., Joo, E.-J., Kim, Y. J., Choi, W. S., Kim, Y.-J., Seo, Y. Bin, Yoon, Y. K., Ku, N. S., Jeong, S. J., Kim, S.-H., Peck, K. R., & Yeom, J. S. (2020). Interim guidelines on antiviral therapy for COVID-19. Infection & Chemotherapy, 52 (2), 281. https://doi.org/10.3947/ic.2020.52.2.281
la Porte, C. J. L., Colbers, E. P. H., Bertz, R., Voncken, D. S., Wikstrom, K., Boeree, M. J., Koopmans, P. P., Hekster, Y. A., & Burger, D. M. (2004). Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrobial Agents and Chemotherapy, 48 (5), 1553–1560. https://doi.org/10.1128/AAC.48.5.1553-1560.2004
Li, F., Lu, J., & Ma, X. (2012). CYP3A4-mediated lopinavir bioactivation and its inhibition by ritonavir. Drug Metabolism and Disposition, 40(1), 18–24. https://doi.org/10.1124/dmd.111.041400
Li, Q., & Kang, C. B. (2020). Progress in developing inhibitors of SARS-CoV-2 3C-like protease. Microorganisms, 8 (8), 1250. https://doi.org/10.3390/microorganisms8081250
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426 (6965), 450–454. https://doi.org/10.1038/nature02145
Li, Z., Tomlinson, A. C., Wong, A. H., Zhou, D., Desforges, M., Talbot, P. J., Benlekbir, S., Rubinstein, J. L., & Rini, J. M. (2019). The human coronavirus HCoV-229E S-protein structure and receptor binding. eLife, 8, e51230. https://doi.org/10.7554/eLife.51230
Meini, S., Pagotto, A., Longo, B., Vendramin, I., Pecori, D., & Tascini, C. (2020). Role of lopinavir/ritonavir in the treatment of Covid-19: A review of current evidence, guideline recommendations, and perspectives.Journal of Clinical Medicine, 9 (7), 2050. https://doi.org/10.3390/jcm9072050
Nile, S. H., Nile, A., Qiu, J., Li, L., Jia, X., & Kai, G. (2020). COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine & Growth Factor Reviews, 53, 66–70. https://doi.org/10.1016/j.cytogfr.2020.05.002
Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K., Wang, W., & Tian, D.-S. (2020). Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clinical Infectious Diseases, 71 (15), 762–768. https://doi.org/10.1093/cid/ciaa248
Rabi, F. A., Al Zoubi, M. S., Kasasbeh, G. A., Salameh, D. M., & Al-Nasser, A. D. (2020). SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens, 9 (3), 231. https://doi.org/10.3390/pathogens9030231
Rower, J. E., Meissner, E. G., Jimmerson, L. C., Osinusi, A., Sims, Z., Petersen, T., Bushman, L. R., Wolfe, P., McHutchison, J. G., Kottilil, S., & Kiser, J. J. (2015). Serum and cellular ribavirin pharmacokinetic and concentration–effect analysis in HCV patients receiving sofosbuvir plus ribavirin. Journal of Antimicrobial Chemotherapy, 70 (8), 2322–2329. https://doi.org/10.1093/jac/dkv122
Sadeghi, A., Ali Asgari, A., Norouzi, A., Kheiri, Z., Anushirvani, A., Montazeri, M., Hosamirudsai, H., Afhami, S., Akbarpour, E., Aliannejad, R., Radmard, A. R., Davarpanah, A. H., Levi, J., Wentzel, H., Qavi, A., Garratt, A., Simmons, B., Hill, A., & Merat, S. (2020). Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): A randomized controlled trial. Journal of Antimicrobial Chemotherapy, 75 (11), 3379–3385. https://doi.org/10.1093/jac/dkaa334
Sayad, B., Sobhani, M., & Khodarahmi, R. (2020). Sofosbuvir as repurposed antiviral drug against COVID-19: Why were we convinced to evaluate the drug in a registered/approved clinical trial? Archives of Medical Research, 51 (6), 577–581. https://doi.org/10.1016/j.arcmed.2020.04.018
Setiadi, A. P., Wibowo, Y. I., Halim, S. V., Brata, C., Presley, B., & Setiawan, E. (2020). Tata laksana terapi pasien dengan COVID-19: Sebuah kajian naratif. Indonesian Journal of Clinical Pharmacy, 9 (1), 70. https://doi.org/10.15416/ijcp.2020.9.1.70
Sigrist, C. J., Bridge, A., & Le Mercier, P. (2020). A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Research, 177, 104759. https://doi.org/10.1016/j.antiviral.2020.104759
Spinner, C. D., Gottlieb, R. L., Criner, G. J., Arribas López, J. R., Cattelan, A. M., Soriano Viladomiu, A., Ogbuagu, O., Malhotra, P., Mullane, K. M., Castagna, A., Chai, L. Y. A., Roestenberg, M., Tsang, O. T. Y., Bernasconi, E., Le Turnier, P., Chang, S. C., Sengupta, D., Hyland, R. H., Osinusi, A. O., & Marty, F. M. (2020). Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA, 324 (11), 1048–1057. https://doi.org/10.1001/jama.2020.16349
Sugitha, K. S. L. (2020). COVID-19: Respon imunologis, ketahanan pada permukaan benda dan pilihan terapi klinis. Intisari Sains Medis, 11 (2), 791–797. https://doi.org/10.15562/ism.v11i2.746
Sun, D. (2020). Remdesivir for treatment of COVID-19: Combination of pulmonary and IV administration may offer additional benefit. *AAPS Journal, 22 (4), 77. https://doi.org/10.1208/s12248-020-00459-8
Tan, Q., Duan, L., Ma, Y., Wu, F., Huang, Q., Mao, K., Xiao, W., Xia, H., Zhang, S., Zhou, E., Ma, P., Song, S., Li, Y., Zhao, Z., Sun, Y., Li, Z., Geng, W., Yin, Z., & Jin, Y. (2020). Is oseltamivir suitable for fighting against COVID-19: In silico assessment, in vitro and retrospective study. Bioorganic Chemistry, 104, 104257. https://doi.org/10.1016/j.bioorg.2020.104257
Tong, S., Su, Y., Yu, Y., Wu, C., Chen, J., Wang, S., & Jiang, J. (2020). Ribavirin therapy for severe COVID-19: A retrospective cohort study. International Journal of Antimicrobial Agents, 56 (3), 106114. https://doi.org/10.1016/j.ijantimicag.2020.106114
Ulhaq, Z. S., & Soraya, G. V. (2020). Interleukin-6 as a potential biomarker of COVID-19 progression. Médecine et Maladies Infectieuses, 50 (4), 382–383. https://doi.org/10.1016/j.medmal.2020.04.002
Uzunova, K., Filipova, E., Pavlova, V., & Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomedicine & Pharmacotherapy, 131, 110668. https://doi.org/10.1016/j.biopha.2020.110668
Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J. J. V., Pfeffer, M. A., & Solomon, S. D. (2020). Renin–angiotensin–aldosterone system inhibitors in patients with COVID-19. New England Journal of Medicine, 382 (17), 1653–1659. https://doi.org/10.1056/NEJMsr2005760
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30 (3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181 (4), 894-904.e9. https://doi.org/10.1016/j.cell.2020.03.045
Wang, Y., Anirudhan, V., Du, R., Cui, Q., & Rong, L. (2020). Recent updates in the pharmacological management of COVID-19. Letters in Applied NanoBioScience, 10 (1), 1969-1980.
Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., ... Wang, C. (2020). Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, 395(10236), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9
Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA, 324 (8), 782. https://doi.org/10.1001/jama.2020.12839
World Health Organization. (2020). Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Wu, C. Y., Jan, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S. E., Hsu, H. H., Huang, H. C., Wu, D., Brik, A., Liang, F. S., Liu, R. S., Fang, J. M., Chen, S. T., Liang, P. H., & Wong, C. H. (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0403596101
Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., Zhang, Y., Song, J., Wang, S., Chao, Y., Yang, Z., Xu, J., Zhou, X., Chen, D., Xiong, W., ... Song, Y. (2020). Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine, 180 (7), 934. https://doi.org/10.1001/jamainternmed.2020.0994
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA, 323 (13), 1239. https://doi.org/10.1001/jama.2020.2648
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F.-S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8 (4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clinical Immunology, 215, 108427. https://doi.org/10.1016/j.clim.2020.108427
Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., Sun, R., Tian, Z., Xu, X., & Wei, H. (2020). Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review, 7 (6), 998–1002. https://doi.org/10.1093/nsr/nwaa041
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of Medicine, 14 (2), 185–192. https://doi.org/10.1007/s11684-020-0754-0